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Sketching solves the problem (in theory)

GraphZeppelin: Processing 

Enormous, Changing Graphs

Example Problem: find connected components of graph with 𝑛
nodes  subject to stream of edge insertions & deletions.

Semi-Streaming constraint: 𝑂(𝑛 ⋅ polylog(n)) space.

Analyzing Massive Evolving Graphs

Compressing graph stream via
linear sketching uses
𝑂(𝑛 ⋅ log3(𝑛)) space.  

Even though it compresses 
insert/delete updates one by one in 
stream order, it can recover 
connected components w.h.p.

[Ahn, Guha, McGregor SODA 2012]

Handle massive graphs:  low space 
complexity means larger graphs can 
be processed given fixed RAM size.

Ingest fast streams: low update time 
crucial for massive graphs that may 
change millions of times per second.

Solve many graph problems: CC is a 
black box for many other semi-
streaming algs.

A graph sketching system should:

… but existing algorithms don’t achieve this.

Sketches are asymptotically small, but how large are they in practice?

Back of envelope calculation for graph on 1 billion nodes:

Before constants, requires roughly 25 TB. Too big for RAM!

109 ⋅ log3(109) = 2.7 ⋅ 1013

Streaming assumption: only RAM is fast 
enough to keep up with high-speed streams.

But today’s high speed SSDs are catching 
up: sequential SSD bandwidth approaching 
random RAM bandwidth.

Can we get sketching to work on disk –
without being massively slower?

An Aside: 
Since sketch size scales with node 
count but not edge count, they’re 
most useful on dense graphs.

Common folk wisdom: only sparse 
graphs exist at scale.

More likely: dense graphs aren’t
studied because we lack the tools
to work with them.

Sketching makes working with 
dense graphs possible.

Graph datasets in NetworkRepository

A Disk-Friendly Graph Sketching System
GraphZeppelin: a C++ system that solves the connected 
components problem on graph streams. (“avoiding the data 
explosion in graph streams”)

Its core algorithm is a sketching algorithm that is also I/O-
optimal in the external memory model, so it is fast even 
when run on modern SSDs.

Optimized for dense graphs.

Fast: 3-5 million updates/sec in RAM and > 2.5 on disk.

Compact: uses 45GB of space to process a >200GB stream of 
updates for a 218-node graph.

A New Sketching Model
Semi-streaming model*:

𝑂(𝑝𝑜𝑙𝑦𝑙𝑜𝑔(𝑛)) RAM

𝑂(𝑛 ⋅ 𝑝𝑜𝑙𝑦𝑙𝑜𝑔(𝑛)) fast disk     
with block size 𝐵.

These disks are larger than RAM, but 
can’t be made as enormous as old-
fashioned hard drives. So we can’t fit 
an entire dense graph on them.

As in the external memory model, data on disk is 
partitioned into blocks of size 𝐵. Data can only be 
read/written a block at a time. 

A block I/O costs as much as 𝑂(𝐵) RAM accesses.

In addition to small space and few passes, we also 
now want our algorithm to be I/O efficient.

Existing graph stream systems are optimized for 
sparse graphs and store the graph explicitly.

Aspen [DBS 2019]            Terrace [PWXB 2021]

Faster: Aspen and Terrace are very fast on 
sparse graphs (10-50x106 edges/sec) in RAM.

GZ 2x faster than Aspen and 30x faster than 
Terrace on dense graphs in RAM.

When they page to disk…

More compact: GraphZeppelin uses 
half the space of Aspen and one tenth 
the space of Terrace even for 
moderately sized dense graphs.

We need to rethink the graph streaming model
𝑂 𝑛 ⋅ polylog n space is too large for modern RAM. And disk is fast enough to keep 
up with high-speed streams, if algorithms are I/O efficient.

If you want a streaming/sketching algorithm to be practical, it should also be designed 
as an external memory algorithm.


